SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey
Autor: | Antonella Vallenari, Xavier Luri, Bernardino Arcay, Carlos Dafonte, K. W. Smith, Minia Manteiga, Diego Fustes |
---|---|
Rok vydání: | 2013 |
Předmět: |
Self-organizing map
Computer science media_common.quotation_subject General Engineering Astronomical survey computer.software_genre Galaxy Computer Science Applications Statistical classification Identification (information) Knowledge extraction Artificial Intelligence Sky Outlier Data mining computer media_common |
Zdroj: | Expert Systems with Applications. 40:1530-1541 |
ISSN: | 0957-4174 |
DOI: | 10.1016/j.eswa.2012.08.069 |
Popis: | Gaia is an ESA cornerstone astronomical mission that will observe with unprecedented precision positions, distances, space motions, and many physical properties of more than one billion objects in our Galaxy and beyond. It will observe all objects in the sky in the visible magnitude range from 6 to 20, up to approximately 10^9 sources. An international scientific consortium, the Gaia Data Processing and Analysis Consortium (Gaia DPAC), has organized itself in several coordination units, with the aim, among others, of addressing the work of classifying the observed astronomical sources, using both supervised and unsupervised classification algorithms. This work focuses on the analysis of classification outliers by means of unsupervised classification. We present a novel method to combine SOMs trained with independent features that are calculated from spectrophotometry. The method as described here can help to improve the models used for the supervised classification of astronomical sources. Furthermore, it allows for data exploration and knowledge discovery in huge astronomical databases such as the upcoming Gaia mission. |
Databáze: | OpenAIRE |
Externí odkaz: |