Vertex-minimal planar graphs with cyclic 2-group symmetry

Autor: Charles Schmidt, L.-K. Lauderdale, Kassie Archer, Phung T. Tran, Rebecca Darby, Asa Linson, Mariah K. Maxfield
Rok vydání: 2020
Předmět:
Zdroj: Journal of Algebraic Combinatorics. 54:1-15
ISSN: 1572-9192
0925-9899
DOI: 10.1007/s10801-020-00964-1
Popis: For the positive integer m, let $${\mathbb {Z}}_m$$ denote the cyclic group of order m. Vertex-minimal planar graphs with prescribed automorphism group $${\mathbb {Z}}_m$$ were first considered by Marusic. In particular, when m is odd he produced a vertex-minimal planar graph with $${\mathbb {Z}}_m$$ -symmetry. Marusic then conjectured the order of a vertex-minimal planar graph with $${\mathbb {Z}}_m$$ -symmetry when m is a power of 2; in this article, we prove his conjecture. We conclude by discussing vertex-minimal planar graphs with noncyclic automorphism groups and pose some open questions.
Databáze: OpenAIRE