Selection of the optimal parameter value for the Isomap algorithm
Autor: | Paul L. Rosin, Oksana Samko, Andrew David Marshall |
---|---|
Rok vydání: | 2006 |
Předmět: |
business.industry
Nonlinear dimensionality reduction Pattern recognition ComputingMethodologies_PATTERNRECOGNITION Data point Artificial Intelligence Isometric feature mapping Signal Processing Isomap algorithm Computer Vision and Pattern Recognition Artificial intelligence business Isomap Software Mathematics Free parameter |
Zdroj: | Pattern Recognition Letters. 27:968-979 |
ISSN: | 0167-8655 |
DOI: | 10.1016/j.patrec.2005.11.017 |
Popis: | The isometric feature mapping (Isomap) method has demonstrated promising results in finding low-dimensional manifolds from data points in high-dimensional input space. Isomap has one free parameter (number of nearest neighbours K or neighbourhood radius @e), which has to be specified manually. In this paper we present a new method for selecting the optimal parameter value for Isomap automatically. Numerous experiments on synthetic and real data sets show the effectiveness of our method. |
Databáze: | OpenAIRE |
Externí odkaz: |