Effect of Temperature and Molarity on the Bio-Oil Yield and Quality by Pyrolysis of açaí Seeds (Euterpe Oleraceae, Mart.) Activated With KOH

Autor: Flávio Pinheiro Valois, Gerson Valdez Daniel, Kelly Christina Alves Bezerra, Fernanda Paula da Costa Assunção, Sammy Jonatan Bremer, Lucas Pinto Bernar, Simone Patrícia Aranha Da Paz, Marcelo Costa Santos, Waldeci Paraguassu Feio, Renan Marcelo Pereira Silva, Neyson Martins Mendonça, Douglas Alberto Rocha De Castro, Sergio Duvoisin Junior, Marta Chagas Monteiro, Nélio Teixeira Machado
Rok vydání: 2023
Popis: This study explores the impact of temperature and molarity in the pyrolysis of Açaí seeds (Euterpe Oleraceae, Mart.) activated with KOH on the yield of bio-oil, hydrocarbon content of bio-oil, and chemical composition of aqueous phase. The experiments were carried out at 350, 400, and 450 °C and 1.0 atmosphere, with 2.0 M KOH, and at 450 °C and 1.0 atmosphere, with 0.5 M, 1.0 M and 2.0 M KOH, in laboratory scale. The composition of bio-oils and aqueous phase determined by GC-MS, while the acid value, a physico-chemical property of fundamental importance in bio-fuels, of bio-oils and aqueous phases by AOCS methods. The solid phase (biochar) characterized by X-ray diffraction (XRD). The diffractograms identified the presence of Kalicinite (KHCO3) in biochar, and those higher temperatures favor the formation peaks of Kalicinite (KHCO3). The pyrolysis of Açaí seeds activated with KOH show bio-oil yields from 3.19 to 6.79 (wt.%), aqueous phase yields between 20.34 and 25.57 (wt.%), solid phase yields (coke) between 33.40 and 43.37 (wt.%), and gas yields from 31.85 to 34.45 (wt.%). The yield of bio-oil shows a smooth exponential increase with temperature. The acidity of bio-oil varied between 12.3 and 257.6 mgKOH/g, decreasing exponentially with temperature, while that of aqueous phase between 17.9 and 118.9 mgKOH/g, showing and exponential decay behavior with temperature, demonstrating that higher temperatures favor not only the yield of bio-oil but also bio-oils with lower acidity. For the experiments with KOH activation, the GC-MS of bio-oil identified the presence of hydrocarbons (alkanes, alkenes, cycloalkanes, cycloalkenes, and aromatics) and oxygenates (carboxylic acids, phenols, ketones, and esters). The concentration of hydrocarbons varied between 10.19 to 25.71 (area.%), increasing with temperature, while that of oxygenates from 52.69 to 72.15 (area.%), decreasing with temperature. For the experiments with constant temperature, the concentrations of hydrocarbons in bio-oil increase exponentially with molarity, while those of oxygenates decrease exponentially, showing that higher molarities favor the formation of hydrocarbons in bio-oil. Finally, it can be concluded that chemical activation of Açaí seeds with KOH favors the not only the yield of bio-oil but also the content of hydrocarbons. The study of process variables is of utmost importance in order to clearly assess reaction mechanisms, economic viability and design goals that could be derived from chemically activated biomass pyrolysis processes.
Databáze: OpenAIRE