Properties of the squared Laguerre–Gaussian vortices

Autor: Savelyeva, Alexandra, Kovalev, Alexey, Kozlova, Elena, Kotlyar, Victor
Jazyk: angličtina
Rok vydání: 2023
Předmět:
DOI: 10.18721/jpm.161.226
Popis: In this paper, a new type of optical vortex called the squared Laguerre–Gauss (LG)2 vortex beam has been investigated. Theoretical conclusions and numerical experiment confirm that these beams are Fourier-invariant and retain their structure at the focus of a spherical lens. In the Fresnel diffraction zone, such a beam is transformed into a superposition of conventional LG beams, the number of which is equal to the number of rings in the (LG)2 beam. The presented beams are structurally stable in the case of one intensity ring.
В данной работе исследовался новый тип оптического вихря, названный квадратным вихревым пучком Лагерра-Гаусса (ЛГ)^2. Теоретические выводы и численный эксперимент подтверждают, что эти пучки Фурье-инвариантны и сохраняют свою структуру в фокусе сферической линзы. В зоне дифракции Френеля такой пучок трансформируется в суперпозицию обычных пучков ЛГ, количество которых равно количеству колец в пучке (ЛГ)^2. Представленные пучки структурно устойчивы в случае одного кольца интенсивности.
Databáze: OpenAIRE