FRACTAL OSCILLATION AND ITS FREQUENCY-AMPLITUDE PROPERTY
Autor: | Chun-Hui He, Khaled A. Gepreel, Zuo-Wei Zhang, Shuai-Jia Kou, Ji-Huan He |
---|---|
Rok vydání: | 2021 |
Předmět: |
Surface (mathematics)
Physics Oscillation 020209 energy Applied Mathematics Mathematical analysis 02 engineering and technology Low frequency 01 natural sciences 010305 fluids & plasmas Amplitude Fractal Simple (abstract algebra) Modeling and Simulation Fractal derivative 0103 physical sciences 0202 electrical engineering electronic engineering information engineering Geometry and Topology Porous medium |
Zdroj: | Fractals. 29:2150105 |
ISSN: | 1793-6543 0218-348X |
DOI: | 10.1142/s0218348x2150105x |
Popis: | When an oscillator vibrates in a porous medium or along an unsmooth surface, a fractal model can be adopted using the two-scale fractal derivative. This paper elucidates a simple but effective method for fast and exclusive insight into the asymptotically periodic property at the initial stage and the extremely low frequency property when time tends to infinity. Some examples are illustrated to show the one-step solution process and the accurate results. |
Databáze: | OpenAIRE |
Externí odkaz: |