Review on Vibration Analysis of Cracked Cantilever Beam

Autor: Mohd Anas Ansari
Rok vydání: 2021
Předmět:
Zdroj: International Journal for Research in Applied Science and Engineering Technology. 9:536-541
ISSN: 2321-9653
Popis: A unique feature of fiber-reinforced composite materials is that it allows structural tailoring for favorable dynamic performance, due to the directional nature of composite materials. Because of the directed character, material coupling occurs, resulting in coupled vibration modes and complicating dynamic analysis. A transverse triangular force impulse modulated by a harmonic motion excites the beam. For the substance of the beam, the Kelvin–Voigt model is employed. The fractured beam is represented by two sub-beams linked by a massless elastic rotating spring. The beams are designed to function in wet environments, which cause rusting. Corrosion causes cracks to form in beams, altering their inherent frequency and mode shape. The present paper examines the different investigations that have been done to investigate the impact of fracture on the dynamic properties of beams. The researchers provided a comprehensive evaluation of the impact of crack design factors (crack depth, crack location) on cantilever beam transverse and torsional frequencies. It is also given the analytical approach, numerical method, and experimental methods for studying the impact of fracture on vibration characteristics. Keywords: Cantilever Beam, Crack dimensions, Damage, Kelvin–Voigt model.
Databáze: OpenAIRE