Produced Water Surface Spills and the Risk for BTEX and Naphthalene Groundwater Contamination

Autor: Greg L. Butters, Melinda Laituri, Amanda Shores
Rok vydání: 2017
Předmět:
Zdroj: Water, Air, & Soil Pollution. 228
ISSN: 1573-2932
0049-6979
DOI: 10.1007/s11270-017-3618-8
Popis: The widespread use of unconventional drilling involving hydraulic fracturing (“fracking”) has allowed for increased oil-and-gas extraction, produced water generation, and subsequent spills of produced water in Colorado and elsewhere. Produced water contains BTEX (benzene, toluene, ethylbenzene, xylene) and naphthalene, all of which are known to induce varying levels of toxicity upon exposure. When spilled, these contaminants can migrate through the soil and contaminant groundwater. This research modeled the solute transport of BTEX and naphthalene for a range of spill sizes on contrasting soils overlying groundwater at different depths. The results showed that benzene and toluene were expected to reach human health relevant concentration in groundwater because of their high concentrations in produced water, relatively low solid/liquid partition coefficient and low EPA drinking water limits for these contaminants. Peak groundwater concentrations were higher and were reached more rapidly in coarser textured soil. Risk categories of “low,” “medium,” and “high” were established by dividing the EPA drinking water limit for each contaminant into sequential thirds and modeled scenarios were classified into such categories. A quick reference guide was created that allows the user to input specific variables about an area of interest to evaluate that site’s risk of groundwater contamination in the event of a produced water spill. A large fraction of produced water spills occur at hydraulic-fracturing well pads; thus, the results of this research suggest that the surface area selected for a hydraulic-fracturing site should exclude or require extra precaution when considering areas with shallow aquifers and coarsely textured soils.
Databáze: OpenAIRE