Schwarz Problem in Ellipse for Nondiagonalizable Matrices

Autor: V. G. Nikolaev
Rok vydání: 2020
Předmět:
Zdroj: Journal of Mathematical Sciences. 251:876-901
ISSN: 1573-8795
1072-3374
DOI: 10.1007/s10958-020-05134-z
Popis: We study the Schwarz problem for J-analytic vector-valued functions in an ellipse with a square matrix J admitting a nondiagonal Jordan form. We obtain conditions on the ellipse and matrix J necessary and sufficient for the existence and uniqueness of a solution to the Schwarz problem with an arbitrary boundary function of Holder class. Under certain conditions on the matrix J, we show that the homogeneous Schwarz problem in an ellipse has a solution in the form of a vector polynomial of an arbitrary degree.
Databáze: OpenAIRE