S-shaped and broken S-shaped bifurcation curves for a multiparameter diffusive logistic problem with Holling type-III functional response

Autor: Tzung-Shin Yeh
Rok vydání: 2017
Předmět:
Zdroj: Communications on Pure and Applied Analysis. 16:645-670
ISSN: 1534-0392
DOI: 10.3934/cpaa.2017032
Popis: We study exact multiplicity and bifurcation curves of positive solutions for a multiparameter diffusive logistic problem with Holling type-Ⅲ functional response \begin{document}${\left\{ {\begin{array}{*{20}{l}} {{u^{\prime \prime }}(x) + \lambda \left[ {ru(1 - \frac{u}{q}) - \frac{{{u^p}}}{{1 + {u^p}}}\% } \right] = 0{\text{,}} - {\text{1}} where u is the population density of the species, p > 1, q, r are two positive dimensionless parameters, and λ > 0 is a bifurcation parameter. For fixed p > 1, assume that q, r satisfy one of the following conditions: (ⅰ) r ≤ η1, p* q and (q, r) lies above the curve \begin{document}$\begin{array}{l}{\Gamma _1} = \{ (q,r):q(a) = \frac{{a[2{a^p} - (p - 2)]}}{{{a^p} - (p - 1)}}{\rm{, }}\\\quad \quad \quad \quad \quad r(a) = \frac{{{a^{p - 1}}[2{a^p} - (p - 2)]}}{{{{({a^p} + 1)}^2}}}{\rm{, }}\sqrt[p]{{p - 1}}\% (ⅱ) r ≤ η2, p* q and (q, r) lies on or below the curve Γ1, where η1, p* and η2, p* are two positive constants, and $C_{p}^{*}={{\left(\frac{{{p}^{2}}+3p-4+p\sqrt{%{{p}^{2}}+6p-7}}{4} \right)}^{1/p}}$. Then on the (λ, ||u||∞)-plane, we give a classification of three qualitatively different bifurcation curves: an S-shaped curve, a broken S-shaped curve, and a monotone increasing curve. Hence we are able to determine the exact multiplicity of positive solutions by the values of q, r and λ.
Databáze: OpenAIRE