Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow
Autor: | Anna L. Mazzucato, Gung-Min Gie, James P. Kelliher |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
Applied Mathematics 010102 general mathematics Mathematical analysis Boundary (topology) Condensed Matter Physics 01 natural sciences Domain (mathematical analysis) Euler equations Physics::Fluid Dynamics 010101 applied mathematics Computational Mathematics Viscosity symbols.namesake Bounded function symbols Boundary value problem 0101 mathematics Navier–Stokes equations Asymptotic expansion Mathematical Physics |
Zdroj: | Journal of Mathematical Fluid Mechanics. 20:1405-1426 |
ISSN: | 1422-6952 1422-6928 |
DOI: | 10.1007/s00021-018-0371-8 |
Popis: | We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain $$\Omega \subset \mathbb {R}^3$$ under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], $$0 |
Databáze: | OpenAIRE |
Externí odkaz: |