Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow

Autor: Anna L. Mazzucato, Gung-Min Gie, James P. Kelliher
Rok vydání: 2018
Předmět:
Zdroj: Journal of Mathematical Fluid Mechanics. 20:1405-1426
ISSN: 1422-6952
1422-6928
DOI: 10.1007/s00021-018-0371-8
Popis: We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain $$\Omega \subset \mathbb {R}^3$$ under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], $$0
Databáze: OpenAIRE