Existence and uniqueness of renormalized solution for nonlinear parabolic equations in Musielak Orlicz spaces
Autor: | Aberqi Ahmed, Bennouna Jaouad, Mhamed Elmassoudi |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Boletim da Sociedade Paranaense de Matemática. 40:1-22 |
ISSN: | 2175-1188 0037-8712 |
DOI: | 10.5269/bspm.45234 |
Popis: | This paper is devoted to the study of a class of parabolic equation of type$$ \frac{\partial u}{\partial t} -div(A(x,t,u,\nabla u) +B(x,t,u)) =f \quad\mbox{in}\quad Q_T, $$where $div(A(x,t,u,\nabla u)$ is a Leray-Lions type operator, $B(x,t,u)$ is a nonlinear lower order term and $f\in L^{1}(Q_{T})$.We show the existence and the uniqueness of renormalized solution in the framework of Musielak-Orlicz spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |