On the outer-connected domination in graphs

Autor: Seyed Mahmoud Sheikholeslami, Roslan Hasni, Odile Favaron, Hossein Karami, M. H. Akhbari
Rok vydání: 2011
Předmět:
Zdroj: Journal of Combinatorial Optimization. 26:10-18
ISSN: 1573-2886
1382-6905
DOI: 10.1007/s10878-011-9427-x
Popis: A set S of vertices of a graph G is an outer-connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraph induced by V?S is connected. The outer-connected domination number $\widetilde{\gamma}_{c}(G)$ is the minimum size of such a set. We prove that if ?(G)?2 and diam?(G)?2, then $\widetilde{\gamma}_{c}(G)\le (n+1)/2$ , and we study the behavior of $\widetilde{\gamma}_{c}(G)$ under an edge addition.
Databáze: OpenAIRE