Semi-Implicit Scheme for the DWD Lokal-Modell
Autor: | G. Doms, C. Girard, S. Thomas, U. Schättler |
---|---|
Rok vydání: | 2000 |
Předmět: | |
Zdroj: | Meteorology and Atmospheric Physics. 73:105-125 |
ISSN: | 1436-5065 0177-7971 |
DOI: | 10.1007/s007030050068 |
Popis: | The fourth generation of numerical weather prediction (NWP) models is currently under development at the Deutscher Wetterdienst (DWD) consisting of a global grid point model (GME) and limited-area Lokal-Modell (LM). The nonhydrostatic fully compressible LM has been designed to meet high-resol ution regional fore-cast requirements at meso-β and meso-γ scales. The initial LM implementation is based on the NCAR/Penn State MM5 with the addition of a novel generalized terrain-following coordinate and rotated lat-lon grid. A fully 3D semi-implicit time-stepping scheme has been implemented by retaining the full buoyancy term instead of the approximate form found in MM5. In contrast with earlier schemes, mass-lumping is not applied to simplify the elliptic operator on an Arakawa-C/Lorenz grid. The resulting variable-coefficient elliptic problem is solved using a minimal residual Krylov iterative method with line relaxation preconditione rs. The new semi-implicit scheme is compared with a variant of the Klemp–Wilhelmson split-explicit scheme (horizontal explicit, vertical implicit) on the basis of computational efficiency and accuracy at resolutions ranging from 7 km to 400 m. Both idealized 3D mountain wave flows and naturally occuring flows are analyzed. Below the tropopause, the 3D semi-implicit scheme can be more efficient for low Mach number M ≪ 1 flows when the number of small time steps Δt s of the split-explicit approach increases with the sound-speed Courant number. |
Databáze: | OpenAIRE |
Externí odkaz: |