A Cyanobacterial Sidestream Nutrient Removal Process and Its Life Cycle Implications
Autor: | John Sheehan, Graham Peers, Alexander R. Hughes, Carlos Quiroz-Arita, Thomas H. Bradley, Brock Hodgson, Nawa Raj Baral, Sybil Sharvelle |
---|---|
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
Cyanobacteria biology Renewable Energy Sustainability and the Environment 020209 energy Biomass 02 engineering and technology Photosynthesis biology.organism_classification Pulp and paper industry 01 natural sciences 6. Clean water Anaerobic digestion Nutrient Activated sludge Wastewater 13. Climate action 010608 biotechnology 0202 electrical engineering electronic engineering information engineering Environmental science Sewage treatment Agronomy and Crop Science Energy (miscellaneous) |
Zdroj: | BioEnergy Research. 12:217-228 |
ISSN: | 1939-1242 1939-1234 |
Popis: | This study proposes a novel integration of a municipal wastewater treatment facility (WWTF) with a cyanobacterial nutrient removal process for sidestream wastewater treatment. A life cycle assessment (LCA) approach was used to determine the effectiveness and environmental performances of the integrated system. The LCA is populated by models of wastewater process engineering, material balance, cyanobacterial growth, and kinetics of anaerobic digestion. The cyanobacteria growth model incorporates chlorophyll synthesis, nitrogen uptake, photosynthesis, centrate inhibition, and competition for nitrogen between cyanobacteria and nitrifiers. Modeling results are validated against experiments with Synechocystis sp. PCC6803 grown in sludge centrate. With a maximum specific growth rate of 1.09 day−1, the nitrogen removal rate of the proposed WWTF would be increased by 15% when compared to the baseline wastewater treatment facility with a biological nutrient removal process. Incorporating the cyanobacterial nutrient removal process as the sidestream wastewater treatment of a conventional activated sludge process reduces the total nitrogen concentrations discharged from the WWTF from 25.9 to 15.2 mg 1−1. Methane yield was found to be increased by 4% of the baseline value when cyanobacterial biomass was co-digested with the activated sludge. Life cycle energy use and greenhouse gas emissions were found to be reduced by 8% and 17%, respectively, relative to a baseline wastewater treatment facility. Overall, a cyanobacteria-based sidestream municipal wastewater treatment process could be an effective and environmentally sustainable biological nutrient removal process in the future addressing the water-energy-food nexus. |
Databáze: | OpenAIRE |
Externí odkaz: |