Generating subgroups of the circle using statistical convergence of order α
Autor: | Pratulananda Das, K. Bose, W. He |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Acta Mathematica Hungarica. 162:633-646 |
ISSN: | 1588-2632 0236-5294 |
DOI: | 10.1007/s10474-020-01059-w |
Popis: | We introduce a new version of characterized subgroups of the circle group $$\mathbb{T}$$ that we call " $$\alpha$$ -statistically characterized subgroups", in line of the very recent work [11], using the notion of statistical convergence of order $$\alpha$$ [4]. We show that for any arithmetic sequence $$(a_n)$$ and $$\alpha \in (0, 1)$$ , the $$\alpha$$ -statistically characterized subgroups $$t^\alpha_{(a_n)}(\mathbb{T}) $$ is again a Borel subgroup having cardinality $$\mathfrak{c}$$ lying between the characterized and statistically characterized subgroups. |
Databáze: | OpenAIRE |
Externí odkaz: |