Products of general Menger spaces

Autor: Boaz Tsaban, Piotr Szewczak
Rok vydání: 2019
Předmět:
Zdroj: Topology and its Applications. 255:41-55
ISSN: 0166-8641
DOI: 10.1016/j.topol.2019.01.005
Popis: We study, in a systematic manner, products of general topological spaces with Menger's covering property, and its refinements based on filters and semifilters. To this end, we apply Dedekind compactification to extend the projection method from the classic real line topology to the Michael topology. Among other results, we prove that, assuming the Continuum Hypothesis, every productively Lindelof space is productively Menger, and every productively Menger space is productively Hurewicz. None of these implications is reversible.
Databáze: OpenAIRE