Products of general Menger spaces
Autor: | Boaz Tsaban, Piotr Szewczak |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
010102 general mathematics Mathematics::General Topology Topological space 01 natural sciences 010101 applied mathematics Menger space Mathematics::Logic Lindelöf space Projection method Dedekind cut Geometry and Topology Compactification (mathematics) 0101 mathematics Continuum hypothesis Real line Mathematics |
Zdroj: | Topology and its Applications. 255:41-55 |
ISSN: | 0166-8641 |
DOI: | 10.1016/j.topol.2019.01.005 |
Popis: | We study, in a systematic manner, products of general topological spaces with Menger's covering property, and its refinements based on filters and semifilters. To this end, we apply Dedekind compactification to extend the projection method from the classic real line topology to the Michael topology. Among other results, we prove that, assuming the Continuum Hypothesis, every productively Lindelof space is productively Menger, and every productively Menger space is productively Hurewicz. None of these implications is reversible. |
Databáze: | OpenAIRE |
Externí odkaz: |