Lucas Symbolic Formulae and Generating Functions for Chebyshev Polynomials
Autor: | Do Tan Si |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of High Energy Physics, Gravitation and Cosmology. :914-924 |
ISSN: | 2380-4335 2380-4327 |
Popis: | This work shows that each kind of Chebyshev polynomials may be calculated from a symbolic formula similar to the Lucas formula for Bernoulli polynomials. It exposes also a new approach for obtaining generating functions of them by operator calculus built from the derivative and the positional operators. |
Databáze: | OpenAIRE |
Externí odkaz: |