Synchronization of stochastic lattice equations

Autor: María J. Garrido-Atienza, Verena Köpp, Hakima Bessaih, Björn Schmalfuß, Meihua Yang
Rok vydání: 2020
Předmět:
Zdroj: Nonlinear Differential Equations and Applications NoDEA. 27
ISSN: 1420-9004
1021-9722
DOI: 10.1007/s00030-020-00640-0
Popis: In this paper we consider a system of two coupled nonlinear lattice stochastic equations driven by additive white noise processes. We prove the master slave synchronization of the components of the coupled system, namely, for $$t\rightarrow \infty $$ the solution of one of the subsystems (the slave component) converges to the values of a Lipschitz continuous function of the other component, the master component. To establish this kind of synchronization we will prove the existence of an exponentially attracting random invariant manifold for the coupled system.
Databáze: OpenAIRE