Popis: |
In this communication, the analysis of the entropy generation on magnetohydrodynamic (MHD) Eyring-Powell nanofluid over a stretching sheet with the effects of heat source/sink is reported. The presence of thermophoresis and Brownian motion are responsible for the enhancement in the properties of heat transfer. With the help of suitable similarity transformation entity, the involved governing partially differential equations (PDEs) are converted into nonlinear coupled ordinary differential equations (ODEs). Further, converted differential equations are solved by numerical methods such as Runge-Kutta fourth order correlated with shooting technique. Influence of various pertinent physical parameters is discussed via velocity, temperature, concentration and entropy profiles. The effect of these variables on the quantities of engineering advance such as Nusselt and Sherwood number are furnished in illustrative form and discussed. Further, the major findings of the outcomes are laid down as follows; the Brownian motion of the particles enhances the fluid temperature whereas thermophoresis retards significantly. The entropy generation overshoots due to the increase in the Reynolds number. Nanofluids with high critical heat fluxes and high-power density have the potential to provide the required cooling effect in military ships, submarines, wave energy converters and high-power laser diodes. |