Higher order dual varieties of generically k -regular surfaces
Autor: | Antonio Lanteri, Raquel Mallavibarrena |
---|---|
Rok vydání: | 2000 |
Předmět: | |
Zdroj: | Archiv der Mathematik. 75:75-80 |
ISSN: | 1420-8938 0003-889X |
Popis: | We prove that, if a smooth complex projective surface \(S \subset \Bbb P^N\) is k-regular, then its k-th order dual variety has the expected dimension, except if S is the k-th Veronese surface. This answers positively a conjecture stated in a previous paper. |
Databáze: | OpenAIRE |
Externí odkaz: |