Higher order dual varieties of generically k -regular surfaces

Autor: Antonio Lanteri, Raquel Mallavibarrena
Rok vydání: 2000
Předmět:
Zdroj: Archiv der Mathematik. 75:75-80
ISSN: 1420-8938
0003-889X
Popis: We prove that, if a smooth complex projective surface \(S \subset \Bbb P^N\) is k-regular, then its k-th order dual variety has the expected dimension, except if S is the k-th Veronese surface. This answers positively a conjecture stated in a previous paper.
Databáze: OpenAIRE