Properties of the Coxeter transformations for the affine Dynkin cycle
Autor: | V. V. Men’shikh, V. F. Subbotin |
---|---|
Rok vydání: | 2014 |
Předmět: |
Mathematics::Combinatorics
General Mathematics Mathematics::Rings and Algebras Coxeter group Uniform k 21 polytope Point group Combinatorics Mathematics::Group Theory Dynkin diagram Coxeter complex Mathematics::Metric Geometry Artin group Longest element of a Coxeter group Mathematics::Representation Theory Coxeter element Mathematics |
Zdroj: | Russian Mathematics. 58:36-40 |
ISSN: | 1934-810X 1066-369X |
Popis: | We study spectral properties of the Coxeter transformations for the affine Dynkin cycle and find the Jordan form of the Coxeter transformation and the Coxeter numbers. |
Databáze: | OpenAIRE |
Externí odkaz: |