RECEPTIVE FIELD ATLAS AND RELATED CNN MODELS

Autor: László Orzó, Ákos Zarándy, Viktor Gál, Csaba Rekeczky, J. Hámori, P.L. Venetianer, Tamás Roska, Dávid Bálya, ZS Borostyánkői, J. Takács, Zoltán Vidnyánszky, László Négyessy, K. Lotz, Mátyás Brendel, István Petrás
Rok vydání: 2004
Předmět:
Zdroj: International Journal of Bifurcation and Chaos. 14:551-584
ISSN: 1793-6551
0218-1274
Popis: In this paper we demonstrate the potential of the cellular nonlinear/neural network paradigm (CNN) that of the analogic cellular computer architecture (called CNN Universal Machine — CNN-UM) in modeling different parts and aspects of the nervous system. The structure of the living sensory systems and the CNN share a lot of features in common: local interconnections ("receptive field architecture"), nonlinear and delayed synapses for the processing tasks, the potentiality of feedback and using the advantages of both the analog and logic signal-processing mode. The results of more than ten years of cooperative work of many engineers and neurobiologists have been collected in an atlas: what we present here is a kind of selection from these studies emphasizing the flexibility of the CNN computing: visual, tactile and auditory modalities are concerned.
Databáze: OpenAIRE