Catechols involved in sclerotization of cuticle and egg pods of the grasshopper, Melanoplus sanguinipes, and their interactions with cuticular proteins
Autor: | Matthew E. Merritt, Sharon Starkey, Rongda Xu, Karl J. Kramer, Theodore L. Hopkins, Jacob Schaefer |
---|---|
Rok vydání: | 1999 |
Předmět: | |
Zdroj: | Archives of Insect Biochemistry and Physiology. 40:119-128 |
ISSN: | 1520-6327 0739-4462 |
Popis: | N-Acetyldopamine (NADA) is the major catechol in the hemolymph of nymphal and adult grasshoppers, Melanoplus sanguinipes (F.), and mainly occurs as an acid-labile conjugate indicated to be a sulfate ester. Its concentration increases in last instar nymphs and peaks during adult cuticle sclerotization. Dopamine (DA), the precursor of NADA and melanic pigments, is about 10 times lower in concentration than NADA, but shows a similar pattern of accumulation. NADA also predominates in cuticle, but its concentration is lowest during the active period of sclerotization, reflecting its role as a precursor for quinonoid tanning agents. Two other catechols, 3,4dihydroxybenzoic acid (DOBA) and 3,4-dihydroxyphenylethanol (DOPET), also occur in hemolymph and cuticle, and their profiles suggest a role in cuticle stabilization. Solid-state NMR analysis of sclerotized grasshopper cuticle (fifth instar exuviae) estimated the relative abundances of organic components to be 59% protein, 33% chitin, 6% catechols, and 2% lipid. About 99% of the catechols are covalently bound in the cuticle, and therefore are involved in sclerotization of the protein-chitin matrix. To determine the types of catechol covalent interactions in the exocuticle, samples of powdered exuviae were heated in HCl under different hydrolytic conditions to release adducts and cross-linked products. 3,4-Dihydroxyphenylketoethanol (DOPKET) and 3,4-dihydroxyphenylketoethylamine (arterenone) are the major hydrolysis products in weak and strong acid, respectively, and primarily represent NADA oligomers that apparently serve as cross-links and filler material in sclerotized cuticle. Intermediate amounts of norepinephrine (NE) are released, which represent N-acetylnorepinephrine |
Databáze: | OpenAIRE |
Externí odkaz: |