An analysis of the effects of different network-based ionosphere estimation models on rover positioning accuracy

Autor: Pawel Wielgosz, Dru A. Smith, Douglas S. Robertson, Paul S. J. Spencer, Gerald L. Mader, Dorota A. Grejner-Brzezinska, Israel Kashani
Rok vydání: 2004
Předmět:
Zdroj: Journal of Global Positioning Systems. 3:115-131
ISSN: 1446-3156
Popis: The primary objective of this paper is to test several methods of modeling the ionospheric corrections derived from a reference GPS network, and to study the impact of the models’ accuracy on the user positioning results. The five ionospheric models that are discussed here are: (1) network RTK (NR) carrier phase-based model — MPGPS-NR, (2) absolute, smoothed pseudorange-based model — MPGPS-P4, (3) IGS Global Ionosphere Model — GIM, (4) absolute model based on undifferenced dual-frequency ambiguous carrier phase data — ICON, and (5) carrier phase-based data assimilation method — MAGIC. Methods 1–4 assume that the ionosphere is an infinitesimal single layer, while method (5) considers the ionosphere as a 3D medium.The test data set was collected at the Ohio Continuously Operating Reference Stations (CORS) network on August 31, 2003. A 24-hour data set, representing moderate ionospheric conditions (maximum Kp = 2o), was processed. The ionospheric reference “truth” in doubledifference (DD) form was generated from the dualfrequency carrier phase data for two selected baselines, ~60 and ~100 km long, where one station was considered as a user receiver at an unknown location (simulated rover). The five ionospheric models were used to generate the DD ionospheric corrections for the rover, and were compared to the reference “truth.” The quality statistics were generated and discussed. Examples of instantaneous ambiguity resolution and RTK positioning are presented, together with the accuracy requirements for the ionospheric corrections, to assure integer ambiguity fixing.
Databáze: OpenAIRE