On the Fourier orthonormal bases of Cantor–Moran measures

Autor: Liu He, Xing-Gang He
Rok vydání: 2017
Předmět:
Zdroj: Journal of Functional Analysis. 272:1980-2004
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2016.09.021
Popis: Let { d n , p n } n = 1 ∞ be a sequence of integers so that 0 d n p n for n ≥ 1 . The infinite convolution of probability measures with finite support and equal distribution μ { p n } , { d n } : = δ p 1 − 1 { 0 , d 1 } ⁎ δ ( p 1 p 2 ) − 1 { 0 , d 2 } ⁎ ⋯ is a Borel probability measure (Cantor–Moran measure). In this paper we study the existence of Fourier basis for L 2 ( μ { p n } , { d n } ) , i.e., find a discrete set Λ such that E Λ = { e − 2 π i λ x : λ ∈ Λ } is an orthonormal basis for L 2 ( μ { p n } , { d n } ) . We give some sufficient conditions for this aim and some examples to explain the theory.
Databáze: OpenAIRE