Evolution of the North Qôroq centre nepheline syenites, South Greenland: alkali-mafic silicates and the role of metasomatism
Autor: | I. M. Coulson |
---|---|
Rok vydání: | 2003 |
Předmět: |
Fractional crystallization (geology)
010504 meteorology & atmospheric sciences geology.rock_type Geochemistry Pyroxene engineering.material 010502 geochemistry & geophysics 01 natural sciences Peralkaline rock chemistry.chemical_compound Augite chemistry Geochemistry and Petrology Nepheline engineering Nepheline syenite Mafic Geology Amphibole 0105 earth and related environmental sciences |
Zdroj: | Mineralogical Magazine. 67:873-892 |
ISSN: | 1471-8022 0026-461X |
DOI: | 10.1180/0026461036750149 |
Popis: | The North Qôroq centre comprises a series of concentric nepheline syenite intrusions and forms part of the Igaliko Nepheline Syenite Complex, in the rift-related Gardar Province of South Greenland. The North Qôroq syenites range from mildly undersaturated augite syenite to strongly peralkaline agpaitic nepheline syenite. Extensivein situfractional crystallization has been postulated for the chemical variation both within units and throughout the centre. Many of the rocks have been affected by metasomatic fluids associated with the emplacement of younger syenite units, and this complicates their interpretation. In this study, the trends and compositions exhibited by pyroxene and amphibole from North Qôroq are examined and related to either primary crystallization or metasomatic activity (e.g. controls offO2, peralkalinity). Implications thus drawn are used to interpret the chemical processes inherent in the chemical and fluid evolution of alkaline magmas, and, in particular, the transition from miaskitic to agpaitic magmatism. In general, the major phases of the North Qôroq syenites records the increasing evolution of the units by crystal fractionation, towards peralkaline compositions. The composition of olivine, in the least evolved syenites, also points to a relatively high state of fractionation of the parent magma, whilst pyroxene and amphibole record an overall decrease in Mg/Mg+Fe), and a general increase in Fe3+and alkali content, with increased fractionation. The increasing peralkalinity of the magma also governs the evolution of pyroxene and, to a lesser degree, amphibole towards higher Zr and Ti contents in the more Na-rich compositions. The trends for pyroxene from metasomatized syenite show similar patterns, but lower Fe2+enrichment, suggesting the source of the metasomatic fluids is similar to the evolving syenites. The presence of amphiboles in metasomatic rocks, and high F contents attest to the F-rich nature of the metasomatic fluids, which is in agreement with results previously reported for metasomatic fluorapatite. |
Databáze: | OpenAIRE |
Externí odkaz: |