Augmenting machine learning algorithms to predict mortality using patient-reported outcomes in oncology

Autor: Jinbo Chen, Ravi B. Parikh, Caryn Lerman, Michael Draugelis, Peter Gabriel, Will Ferrell, Justin E. Bekelman, Jill Schnall, Corey Chivers, Manqing Liu
Rok vydání: 2021
Předmět:
Zdroj: Journal of Clinical Oncology. 39:1510-1510
ISSN: 1527-7755
0732-183X
DOI: 10.1200/jco.2021.39.15_suppl.1510
Popis: 1510 Background: Machine learning (ML) algorithms based on electronic health record (EHR) data have been shown to accurately predict mortality risk among patients with cancer, with areas under the curve (AUC) generally greater than 0.80. While patient-reported outcomes (PROs) may also predict mortality among patients with cancer, it is unclear whether routinely-collected PROs improve the predictive performance of EHR-based ML algorithms. Methods: This cohort study included 8600 patients with cancer who had an outpatient encounter at one of 18 medical oncology practices in a large academic health system between July 1st, 2019 and January 1st, 2020. 4692 (54.9%) patients completed assessments of symptoms, performance status, and quality of life from the PRO version of the Common Terminology Criteria for Adverse Events and the Patient-Reported Outcomes Measurement Information System Global v.1.2 scales. We hypothesized that ML models predicting 180-day all-cause mortality based on EHR + PRO data would improve AUC compared to ML models based on EHR data alone. We assessed univariate and adjusted associations between each PRO and 180-day mortality. To train the EHR-only model, we fit a Least Absolute Shrinkage and Selection Operator (LASSO) regression using 192 EHR demographic, comorbidity, and laboratory variables. To train the EHR + PRO model, we used a two-phase approach to fit a model using EHR data for all patients and PRO data for those who completed assessments. To test our hypothesis, we compared the bootstrapped AUC, area under the precision-recall curve (AUPRC), and sensitivity at a 20% risk threshold for both models. Results: 464 (5.4%) patients died within 180 days of the encounter. Decreased quality of life, functional status, and appetite were associated with greater 180-day mortality (Table). Compared to the EHR-only model, the EHR + PRO model significantly improved AUC (0.86 [95% CI 0.85-0.86] vs. 0.80 [95% CI 0.80-0.81]), AUPRC (0.40 [95% CI 0.37-0.42] vs. 0.30 [95% CI 0.28-0.32]), and sensitivity (0.45 [95% CI 0.42-0.48] vs. 0.33 [95% CI 0.30-0.35]). Conclusions: Routinely collected PROs augment EHR-based ML mortality risk algorithms. ML algorithms based on EHR and PRO data may facilitate earlier supportive care for patients with cancer. Association of PROs with 180-day mortality.[Table: see text]
Databáze: OpenAIRE