Использование методов и алгоритмов анализа данных и машинного обучения в UEBA/DSS для поддержки принятия управленческих решений
Jazyk: | ruština |
---|---|
Rok vydání: | 2020 |
Předmět: | |
DOI: | 10.26102/2310-6018/2020.28.1.039 |
Popis: | Целью данного исследования является разработка математического и программного обеспечения обнаружения аномального поведения пользователей на основе анализа их поведенческих биометрических характеристик для создания новых способов предоставления аналитических данных анализирующей службе с описанием, почему выявленные действия считаются аномальными. Предметом исследования являются методы машинного обучения, применяемые в UBA/UEBA (User Behavioral Analytics/ User and Entity Behavioral Analytics), DLP (Data Leak Prevention), SIEM (Security information and event management) системах. Объект исследования - UBA/UEBA, DLP, SIEM системы. В данной статье осуществляется обзор применяемости методов машинного обучения в интеллектуальных UEBA/DSS системах. Одной из существенных проблем, в интеллектуальных UEBA/DSS системах, является получение полезной информации, из большого объема неструктурированных, несогласованных данных. Методы и алгоритмы интеллектуальной обработки данных и машинного обучения, применяемые в UEBA/DSS системах, позволяют решить задачи анализа данных различной направленности. Предлагается применение методов машинного обучения в реализации мобильной UEBA/DSS системы. Это позволит добиться высокого качества анализа данных и найти в них сложные зависимости. В ходе исследования был сформирован перечень наиболее значимых факторов, подаваемых на вход анализирующих методов. The aim of this study is to develop mathematical and software for detecting abnormal user behavior based on an analysis of their behavioral biometric characteristics to create new ways to provide analytical data to the analyzing service with a description of why the identified actions are considered abnormal. The subject of the study is the machine learning methods used in UBA / UEBA (User Behavioral Analytics / User and Entity Behavioral Analytics), DLP (Data Leak Prevention), SIEM (Security information and event management) systems. Object of study - UBA / UEBA, DLP, SIEM systems. This article provides an overview of the applicability of machine learning methods in intelligent UEBA / DSS systems. One of the significant problems in intelligent UEBA / DSS systems is obtaining useful information from a large amount of unstructured, inconsistent data. The methods and algorithms of intelligent data processing and machine learning used in UEBA / DSS systems make it possible to solve data analysis problems of various kinds. The application of machine learning methods in the implementation of a mobile UEBA / DSS system is proposed. This will allow to achieve high quality data analysis and find complex dependencies in them. During the study, a list of the most significant factors submitted to the input of the analyzing methods was formed. The application of machine learning methods in UEBA / DSS systems will allow you to make informed management decisions and reduce the time to obtain useful information. №1(28) (2020) |
Databáze: | OpenAIRE |
Externí odkaz: |