Integrable 3D Statistical Models on Six-Valent Graphs
Autor: | I. G. Korepanov, G. I. Sharygin, Dmitry Talalaev |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Proceedings of the Steklov Institute of Mathematics. 302:198-216 |
ISSN: | 1531-8605 0081-5438 |
DOI: | 10.1134/s008154381806010x |
Popis: | The paper is devoted to the study of a special statistical model on graphs with vertices of degrees 6 and 1. We show that this model is invariant with respect to certain Roseman moves if one regards the graph as the singular point set of the diagram of a 2-knot. Our approach is based on the properties of the tetrahedron cohomology complex. |
Databáze: | OpenAIRE |
Externí odkaz: |