Bi-directional grid absorption barrier constrained stochastic processes with applications in finance & investment
Autor: | Aldo Taranto, Shahjahan Khan |
---|---|
Rok vydání: | 2020 |
Předmět: |
Finance
Economics and Econometrics Risk of ruin 050208 finance Computer science business.industry Stochastic process Strategy and Management 05 social sciences Financial market Grid 01 natural sciences 010104 statistics & probability Semimartingale Probability theory Replicating portfolio 0502 economics and business 0101 mathematics business Hedge (finance) |
Zdroj: | Risk Governance and Control: Financial Markets and Institutions. 10:20-33 |
ISSN: | 2077-4303 2077-429X |
DOI: | 10.22495/rgcv10i3p2 |
Popis: | Whilst the gambler’s ruin problem (GRP) is based on martingales and the established probability theory proves that the GRP is a doomed strategy, this research details how the semimartingale framework is required for the grid trading problem (GTP) of financial markets, especially foreign exchange (FX) markets. As banks and financial institutions have the requirement to hedge their FX exposure, the GTP can help provide a framework for greater automation of the hedging process and help forecast which hedge scenarios to avoid. Two theorems are adapted from GRP to GTP and prove that grid trading, whilst still subject to the risk of ruin, has the ability to generate significantly more profitable returns in the short term. This is also supported by extensive simulation and distributional analysis. We introduce two absorption barriers, one at zero balance (ruin) and one at a specified profit target. This extends the traditional GRP and the GTP further by deriving both the probability of ruin and the expected number of steps (of reaching a barrier) to better demonstrate that GTP takes longer to reach ruin than GRP. These statistical results have applications into finance such as multivariate dynamic hedging (Noorian, Flower, & Leong, 2016), portfolio risk optimization, and algorithmic loss recovery. |
Databáze: | OpenAIRE |
Externí odkaz: |