Popis: |
We develop a theory of modular forms on the groups SO ( 3 , n + 1 ) , n ≥ 3 . This is very similar to, but simpler, than the notion of modular forms on quaternionic exceptional groups, which was initiated by Gross-Wallach and Gan-Gross-Savin. We prove the results analogous to those of earlier papers of the author on modular forms on exceptional groups, except now in the familiar setting of classical groups. Moreover, in the setting of SO ( 3 , n + 1 ) , there is a family of absolutely convergent Eisenstein series, which are modular forms. We prove that these Eisenstein series have algebraic Fourier coefficients, like the classical holomorphic Eisenstein series on SO ( 2 , n ) . As an application, using a local result of Savin, we prove that the so-called “next-to-minimal” modular form on quaternionic E 8 has rational Fourier expansion. |