VibroSense

Autor: Tuochao Chen, Peng He, Cheng Zhang, Feng Tian, Lucy M. Wang, Matthew Dressa, Wei Sun, Benjamin Steeper, Zhenyu Lei, Jiayi Zheng
Rok vydání: 2020
Předmět:
Zdroj: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 4:1-28
ISSN: 2474-9567
DOI: 10.1145/3411828
Popis: Smart homes of the future are envisioned to have the ability to recognize many types of home activities such as running a washing machine, flushing the toilet, and using a microwave. In this paper, we present a new sensing technology, VibroSense, which is able to recognize 18 different types of activities throughout a house by observing structural vibration patterns on a wall or ceiling using a laser Doppler vibrometer. The received vibration data is processed and sent to a deep neural network which is trained to distinguish between 18 activities. We conducted a system evaluation, where we collected data of 18 home activities in 5 different houses for 2 days in each house. The results demonstrated that our system can recognize 18 home activities with an average accuracy of up to 96.6%. After re-setup of the device on the second day, the average recognition accuracy decreased to 89.4%. We also conducted follow-up experiments, where we evaluated VibroSense under various scenarios to simulate real-world conditions. These included simulating online recognition, differentiating between specific stages of a device's activity, and testing the effects of shifting the laser's position during re-setup. Based on these results, we discuss the opportunities and challenges of applying VibroSense in real-world applications.
Databáze: OpenAIRE