Simon’s OPUC Hausdorff dimension conjecture
Autor: | Darren C. Ong, Shuzheng Guo, David Damanik |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Mathematische Annalen. 384:1-37 |
ISSN: | 1432-1807 0025-5831 |
Popis: | We show that the Szegő matrices, associated with Verblunsky coefficients $$\{{\alpha }_n\}_{n\in {{\mathbb {Z}}}_+}$$ obeying $$\sum _{n = 0}^\infty n^{\gamma } |{\alpha }_n|^2 < \infty $$ for some $${\gamma } \in (0,1)$$ , are bounded for values $$z \in \partial {{\mathbb {D}}}$$ outside a set of Hausdorff dimension no more than $$1 - {\gamma }$$ . In particular, the singular part of the associated probability measure on the unit circle is supported by a set of Hausdorff dimension no more than $$1-{\gamma }$$ . This proves the OPUC Hausdorff dimension conjecture of Barry Simon from 2005. |
Databáze: | OpenAIRE |
Externí odkaz: |