Popis: |
A catalyst designed for homogeneous catalysis is shown to generate its own liquid phase if deposited onto a support. In this way, a macroscopically heterogeneous catalyst generates a microscopically homogeneous catalytic environment by self-organization. 2,2′-((3,3′-di-tert-butyl-5,5′-dimethoxy-[1,1′-biphenyl]-2,2′-diyl)-bis(oxy))bis(4,4,5,5-tetraphenyl-1,3,2-dioxaphospholane) modified rhodium complexes molecularly adsorbed onto porous silica powder show surprisingly high activity and regioselectivity in the gas-phase hydroformylation of propene to butanal, with no sign of deactivation. Operando IR investigations combined with density functional theory calculations confirm a side reaction: the aldol condensation of the butanal products. These heavier by-products accumulate inside the pores of the catalytic material. IR and gas chromatography show a direct relation between formation of enones, products of the aldol condensation, performance, and stability of the catalytic system. This demonstrates that the aldol condensation products generated in situ act as a solvent providing an ideal environment to the impregnated homogeneous catalyst. |