Popis: |
압축센싱은 신호의 성긴 (Sparse) 성질을 활용하여 Nyquist 표본화율 보다 낮은 측정 율만으로도 신호의 완벽복원이 가능하다는 측면에서 새로운 샘플링 기술로 주목 받고 있다. 블록기반의 압축센싱 기술을 사용하여 영상을 샘플링 하는 경우, 측정신호 영역에서도 공간 영역의 유사도가 보존되므로, 본 논문에서는 블록기반 압축센싱 기술을 사용하여 획득한 자연영상의 측정 신호에 대한 새로운 부호화 기술을 제안한다. 측정신호 간 유사성을 제거하기 위해 이산 웨이블릿 변환(DWT)을 적용한 후, 각 DWT 계수에 적절한 양자화를 수행한다. 이를 통해, 측정신호 내의 중복성을 제거하고, 측정 신호의 비트 율 또한 절약할 수 있었다. 실험 결과, 기존의 블록기반 평활 Projected Landweber 알고리즘에 스칼라 양자화를 적용한 방법, DPCM 방법을 적용한 방법, 그리고 Multihypothesis 기반 블록기반 평활알고리즘에 DPCM을 적용한 방법과 비교할 때, 제안방법의 PSNR이 각각 최대 4dB, 0.9dB, 그리고 2.5dB 더 높은 성능을 보이는 것을 확인 할 수 있었다. |