A Little Linguistics Goes a Long Way: Unsupervised Segmentation with Limited Language Specific Guidance

Autor: Mai Oudah, Alexander Erdmann, Salam Khalifa, Nizar Habash, Houda Bouamor
Rok vydání: 2019
Předmět:
Zdroj: Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology.
DOI: 10.18653/v1/w19-4214
Popis: We present de-lexical segmentation, a linguistically motivated alternative to greedy or other unsupervised methods, requiring only minimal language specific input. Our technique involves creating a small grammar of closed-class affixes which can be written in a few hours. The grammar over generates analyses for word forms attested in a raw corpus which are disambiguated based on features of the linguistic base proposed for each form. Extending the grammar to cover orthographic, morpho-syntactic or lexical variation is simple, making it an ideal solution for challenging corpora with noisy, dialect-inconsistent, or otherwise non-standard content. In two evaluations, we consistently outperform competitive unsupervised baselines and approach the performance of state-of-the-art supervised models trained on large amounts of data, providing evidence for the value of linguistic input during preprocessing.
Databáze: OpenAIRE