Variance asymptotics and scaling limits for random polytopes

Autor: Pierre Calka, Joseph E. Yukich
Rok vydání: 2017
Předmět:
Zdroj: Advances in Mathematics. 304:1-55
ISSN: 0001-8708
DOI: 10.1016/j.aim.2016.08.006
Popis: Let K be a convex set in R d and let K λ be the convex hull of a homogeneous Poisson point process P λ of intensity λ on K. When K is a simple polytope, we establish scaling limits as λ → ∞ for the boundary of K λ in a vicinity of a vertex of K and we give variance asymptotics for the volume and k-face functional of K λ , k ∈ { 0 , 1 , . . . , d − 1 } , resolving an open question posed in [17] . The scaling limit of the boundary of K λ and the variance asymptotics are described in terms of a germ–grain model consisting of cone-like grains pinned to the extreme points of a Poisson point process on R d − 1 × R having intensity d e d h d h d v .
Databáze: OpenAIRE