Popis: |
This work demonstrates the application of organically modified sol–gels as recognition layers combined with mid-infrared evanescent wave sensors for in situ detection of nitrated organics in aqueous media. Sol–gels were prepared by acid-catalyzed copolymerization of phenyltrimethoxysilane (PTMOS) and tetramethoxysilane (TMOS) and were spin-coated onto ZnSe attenuated total reflection (ATR) waveguides. These sensors were investigated with respect to their enrichment properties of selected organophosphates, i.e. parathion, fenitrothion and paraoxon, respectively, and their capability of suppressing interfering water background absorptions. Figures of merit are derived from calibration curves determined to assess sensitivity and reproducibility of the applied sensor system. It can be concluded that sol–gel coated infrared optical sensors enable reproducible detection of organophosphates down to the sub-ppm concentration range. Furthermore, measurement of spiked river water samples demonstrates feasibility as remote field sensor system. Once the required sensitivity is achieved, sol–gel based mid-infrared evanescent wave sensors have the potential of being an alternative to commonly applied biosensors for detection of organophosphates in environmental analysis, since they provide superior mechanical and chemical stability during application relevant periods of time. |