SRPOL DIALOGUE SYSTEMS at SemEval-2021 Task 5: Automatic Generation of Training Data for Toxic Spans Detection

Autor: Piotr Andruszkiewicz, Paweł Bujnowski, Zuzanna Bordzicka, Klaudia Firląg, Joanna Kolis, Michał Satława, Jaroslaw Piersa, Katarzyna Beksa, Katarzyna Zamłyńska, Christian Goltz
Rok vydání: 2021
Předmět:
Zdroj: SemEval@ACL/IJCNLP
Popis: This paper presents a system used for SemEval-2021 Task 5: Toxic Spans Detection. Our system is an ensemble of BERT-based models for binary word classification, trained on a dataset extended by toxic comments modified and generated by two language models. For the toxic word classification, the prediction threshold value was optimized separately for every comment, in order to maximize the expected F1 value.
Databáze: OpenAIRE