Autor: |
Jungmoon Jang, Eric Morilhat, Hyun-su Jeong, Mun-Sung Kim, Bo-hee Kim, X. C. Nguyen |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Volume 1: Offshore Technology. |
DOI: |
10.1115/omae2017-62608 |
Popis: |
This study describes one of the technical solutions for Small Scale FLNG (SSFLNG)[1] development specifically designed to monetize Associated Gas (AG) of producing oil fields located within convenient distance of an existing LNG Plant or Port with LNG storage facility. Limited production capacity combined with short range small scale LNG carriers (SSLNGC), provide a cost effective means for LNG production. Ship to ship off-loading operation by loading arm has been considered in AG SSFLNG. Produced LNG is to be off-loaded from the SSFLNG to side-by-side moored SSLNGC. Relative motion and dynamic load acting on loading arm system in side-by-side mooring arrangement is one of key factors to estimate the offloading operability of the AG SSFLNG. In this paper, a numerical two-body motion analysis for the side-by-side moored SSFLNG in frequency- and time-domain is carried out. Also, the basic engineering work is carried out for the marine loading arms (MLA). Since the MLA reacts approximately as a linear system, it is calculated by a full spectral RAO analysis for each of the worst load cases issued from the spectral ranking. All loads and stresses inside the MLA are verified in accordance with EN1474-1[2] for the situations identified in the previous step. A high level fatigue analysis focused on the cryogenic swivel joints is carried out. Based on the numerical calculation for relative motion in side-by-side moored FLNG, we have been performed structural assessment for MLA in several environment conditions. The structural integrity of both MLA and the LNGC manifold are validated during offloading for Offshore West Africa. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|