A Perron-Frobenius-type Theorem for Positive Matrix Semigroups
Autor: | Heydar Radjavi, Gordon MacDonald, Leo Livshits |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Positivity. 21:61-72 |
ISSN: | 1572-9281 1385-1292 |
Popis: | One consequence of the Perron–Frobenius Theorem on indecomposable positive matrices is that whenever an $$n\times n$$ matrix A dominates a non-singular positive matrix, there is an integer k dividing n such that, after a permutation of basis, A is block-monomial with $$k\times k$$ blocks. Furthermore, for suitably large exponents, the nonzero blocks of $$A^m$$ are strictly positive. We present an extension of this result for indecomposable semigroups of positive matrices. |
Databáze: | OpenAIRE |
Externí odkaz: |