A Perron-Frobenius-type Theorem for Positive Matrix Semigroups

Autor: Heydar Radjavi, Gordon MacDonald, Leo Livshits
Rok vydání: 2016
Předmět:
Zdroj: Positivity. 21:61-72
ISSN: 1572-9281
1385-1292
Popis: One consequence of the Perron–Frobenius Theorem on indecomposable positive matrices is that whenever an $$n\times n$$ matrix A dominates a non-singular positive matrix, there is an integer k dividing n such that, after a permutation of basis, A is block-monomial with $$k\times k$$ blocks. Furthermore, for suitably large exponents, the nonzero blocks of $$A^m$$ are strictly positive. We present an extension of this result for indecomposable semigroups of positive matrices.
Databáze: OpenAIRE