Asymmetric non-Gaussian effects in a tumor growth model with immunization

Autor: Renming Song, Wei Xu, Mengli Hao, Jinqiao Duan
Rok vydání: 2014
Předmět:
Zdroj: Applied Mathematical Modelling. 38:4428-4444
ISSN: 0307-904X
DOI: 10.1016/j.apm.2014.02.026
Popis: The dynamical evolution of a tumor growth model, under immune surveillance and subject to asymmetric non-Gaussian α -stable Levy noise, is explored. The lifetime of a tumor staying in the range between the tumor-free state and the stable tumor state, and the likelihood of noise-induced tumor extinction, are characterized by the mean residence time and the escape probability, respectively. For various initial densities of tumor cells, the mean residence time and the escape probability are computed with different noise parameters. It is observed that unlike the Gaussian noise or symmetric non-Gaussian noise, the asymmetric non-Gaussian noise plays a constructive role in the tumor evolution in this simple model. By adjusting the noise parameters, the mean residence time can be shortened and the escape probability can be increased, simultaneously. This suggests that a tumor may be mitigated with higher probability in a shorter time, under certain external environmental stimuli.
Databáze: OpenAIRE