Asymmetric non-Gaussian effects in a tumor growth model with immunization
Autor: | Renming Song, Wei Xu, Mengli Hao, Jinqiao Duan |
---|---|
Rok vydání: | 2014 |
Předmět: |
Extinction
Tumor State Quantitative Biology::Tissues and Organs Applied Mathematics Gaussian Immunization (finance) Noise (electronics) Quantitative Biology::Cell Behavior symbols.namesake Gaussian noise Modeling and Simulation Statistics symbols Range (statistics) Tumor growth Statistical physics Mathematics |
Zdroj: | Applied Mathematical Modelling. 38:4428-4444 |
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2014.02.026 |
Popis: | The dynamical evolution of a tumor growth model, under immune surveillance and subject to asymmetric non-Gaussian α -stable Levy noise, is explored. The lifetime of a tumor staying in the range between the tumor-free state and the stable tumor state, and the likelihood of noise-induced tumor extinction, are characterized by the mean residence time and the escape probability, respectively. For various initial densities of tumor cells, the mean residence time and the escape probability are computed with different noise parameters. It is observed that unlike the Gaussian noise or symmetric non-Gaussian noise, the asymmetric non-Gaussian noise plays a constructive role in the tumor evolution in this simple model. By adjusting the noise parameters, the mean residence time can be shortened and the escape probability can be increased, simultaneously. This suggests that a tumor may be mitigated with higher probability in a shorter time, under certain external environmental stimuli. |
Databáze: | OpenAIRE |
Externí odkaz: |