A quantitative strong unique continuation property of a diffusive SIS model
Autor: | Taige Wang, Dihong Xu |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Discrete and Continuous Dynamical Systems - S. 15:1599 |
ISSN: | 1937-1179 1937-1632 |
DOI: | 10.3934/dcdss.2022024 |
Popis: | This article is concerned with a strong unique continuation property of solutions for a diffusive SIS (Susceptible - Infected - Susceptible, or SI) model, which belongs to a type of observability inequalities in a time interval \begin{document}$ [0, T] $\end{document}. That is, if one can observe solution on a convex and connected bounded open set \begin{document}$ \omega $\end{document} in a bounded domain \begin{document}$ \Omega $\end{document} at time \begin{document}$ t = T $\end{document}, then the norms of solution on \begin{document}$ [0,T) $\end{document} on \begin{document}$ \Omega $\end{document} are observable. In our discussion, boundary condition is a homogeneous Dirichlet one (hostile boundary condition). |
Databáze: | OpenAIRE |
Externí odkaz: |