On Spectral Properties of the One-Dimensional Stark Operator on the Semiaxis
Autor: | M. G. Makhmudova, A. Kh. Khanmamedov |
---|---|
Rok vydání: | 2020 |
Předmět: |
General Mathematics
media_common.quotation_subject Operator (physics) 010102 general mathematics Spectral properties Mathematical analysis Mathematics::Spectral Theory Infinity 01 natural sciences 010101 applied mathematics symbols.namesake Dirichlet boundary condition symbols 0101 mathematics Algebra over a field Eigenvalues and eigenvectors media_common Mathematics |
Zdroj: | Ukrainian Mathematical Journal. 71:1813-1819 |
ISSN: | 1573-9376 0041-5995 |
DOI: | 10.1007/s11253-020-01749-2 |
Popis: | We consider a one-dimensional Stark operator on the semiaxis with Dirichlet boundary condition at the origin. The asymptotic behavior of eigenvalues at infinity is analyzed. |
Databáze: | OpenAIRE |
Externí odkaz: |