Monte Carlo and60Co‐based kilovoltage x‐ray dosimetry methods
Autor: | M Lawless, Larry A. DeWerd, John A. Micka, Lianna Dimaso, Wesley S. Culberson, B Palmer |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Medical Physics. 45:5564-5576 |
ISSN: | 2473-4209 0094-2405 |
Popis: | PURPOSE This work seeks to investigate new methods to determine the absorbed dose to water from kilovoltage x rays. Current methods are based on measurements in air and rely on correction factors in order to account for differences between the photon spectrum in air and at depth in phantom, between the photon spectra of the calibration beam and the beam of interest, or in the radiation absorption properties of air and water. This work aims to determine the absorbed dose to water in the NIST-matched x-ray beams at the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL). This will facilitate the use of detectors in terms of dose to water, which will allow for a simpler determination of dose to water in clinical kilovoltage x-ray beams. MATERIALS AND METHODS A model of the moderately filtered x-ray beams at the UWADCL was created using the BEAMnrc user code of the EGSnrc Monte Carlo code system. This model was validated against measurements and the dose to water per unit air kerma was calculated in a custom built water tank. Using this value and the highly precise measurement of the air kerma made by the UWADCL, the dose to water was determined in the water tank for the x-ray beams of interest. The dose to water was also determined using the formalism defined in the report of AAPM Task Group 61 and using a method that makes use of a 60 Co absorbed dose-to-water calibration coefficient and a beam quality correction factor to account for differences in beam quality between the 60 Co calibration and kilovoltage x-ray beam of interest. The dose to water values as determined by these different methods was then compared. RESULTS The BEAMnrc models used in this work produced simulations of transverse and depth dose profiles that agreed with measurements with a 2%/2 mm criteria gamma test. The dose to water as determined from the different methods used here agreed within 3.5% at the surface of the water tank and agreed within 1.8% at a depth of 2 cm in phantom. The dose-to-water values all agreed within the associated uncertainties of the methods used in this work. Both the Monte Carlo-based method and the 60 Co-based method had a lower uncertainty than the TG-61 methodology for all of the x-ray beams used in this work. CONCLUSION Two new dose determination methods were used to determine the dose to water in the NIST-matched x-ray beams at the UWADCL and they showed good agreement with previously established techniques. Due to the improved Monte Carlo calculation techniques used in this work, both of the methods have lower uncertainties compared to TG-61. The methods presented in this work compare favorably with calorimetry-based standards established at other institutions. |
Databáze: | OpenAIRE |
Externí odkaz: |