Assessment of deficit irrigation impact on agronomic parameters and water use efficiency of six chickpea (Cicer Arietinum L.) cultivars under Mediterranean semi-arid climate

Autor: Boutheina Douh, Amel Mguidiche, Massoud Jar Allah al-Marri, Mohamed Moussa, Hichem Rjeb
Rok vydání: 2021
Předmět:
Zdroj: Italian Journal of Agrometeorology. :29-42
ISSN: 2038-5625
DOI: 10.36253/ijam-1261
Popis: Six kabuli chickpea genotypes (Cicer Arietinum L.) were evaluated under three water levelss at the open field during February -June 2018. This study was conducted to evaluate the chickpea water stress, on soil water dynamic, agromorphological traits, and water use efficiency to estimate variability levels between varieties and to identify the varieties of chickpea adaptable on semi-arid bioclimatic stage. For this purpose, a trial was conducted at the Higher Agronomic Institute of Chott Mariem (Tunisia). There is no effect of the treatment on the height, biological yield, and branching number. The seeds weigh, PCG, seed yield, harvest index, and water use efficiency relative to seed have the highest value in T1 (100% of ETc) when water use efficiency relative to biological yield, number of pods and of seeds recorded the highest values in T3 (50% of ETc). Univariate analysis showed highly significant differences between genotypes for many traits. Principal Component Analysis was performed for all traits and allowed to define two axes. The first one explains 49.30% of the variability of the total trait and was formed by genotypes ‘Beja’, ‘Nayer’ and’ ‘Rebha’. Genotypes forming this axe are closely related to each other according to their common morphological characters like height (r=0.88), biological yield (r=0.93), bringing the number (r=0.53), seed yield (r=0.81), WUE relative to seed (r=0.75), harvest index (r=0.65) and WUE relative to biological yield (r=0.94). The second clustered genotypes ‘Bochra’ and ‘Nour’. This second axe (27.99%) is represented by pods number (r=0.87), seed number (r=0.87) and PCG (r=0.78).
Databáze: OpenAIRE