Topological classification of integrable geodesic flows in a potential field on the torus of revolution
Autor: | D. S. Timonina |
---|---|
Rok vydání: | 2017 |
Předmět: |
Geodesic
Integrable system General Mathematics 010102 general mathematics Mathematical analysis Potential field Torus 01 natural sciences Hamiltonian system 0103 physical sciences Gravitational singularity 010307 mathematical physics 0101 mathematics Invariant (mathematics) Bifurcation Mathematical physics Mathematics |
Zdroj: | Lobachevskii Journal of Mathematics. 38:1108-1120 |
ISSN: | 1818-9962 1995-0802 |
DOI: | 10.1134/s1995080217060130 |
Popis: | A Liouville classification of integrable Hamiltonian systems which are the geodesic flows on 2-dimensional torus of revolution in a invariant potential field in the case of linear integral is obtained. This classification is obtained using the Fomenko–Zieschang invariant (marked molecules) of investigated systems. All types of bifurcation curves are described. Also a classification of singularities of the system solutions is obtained. |
Databáze: | OpenAIRE |
Externí odkaz: |