About the ratio of the size of a maximum antichain to the size of a maximum level in finite partially ordered sets
Autor: | N N Kuzjurin, Konrad Engel |
---|---|
Rok vydání: | 1985 |
Předmět: | |
Zdroj: | Combinatorica. 5:301-309 |
ISSN: | 1439-6912 0209-9683 |
DOI: | 10.1007/bf02579244 |
Popis: | LetP be a finite partially ordered set. The lengthl(x) of an elementx ofP is defined by the maximal number of elements, which lie in a chain withx at the top, reduced by one. Letw(P) (d(P)) be the maximal number of elements ofP which have the same length (which form an antichain). Further let\(p^n : = \underbrace {PX...XP}_{n - times}\). The numbers\(r_k : = \mathop {\max }\limits_{P:|P| = k} \frac{{d(P)}}{{w(P)}}\) and\(s_k : = \mathop {\max }\limits_{P:|P| = k} \mathop {\lim }\limits_{n \to \infty } \frac{{d(P^n )}}{{w(P^n )}}\) as well as all partially ordered sets for which these maxima are attained are determined. |
Databáze: | OpenAIRE |
Externí odkaz: |