Loss of respiratory complex I subunit NDUFB10 affects complex I assembly and supercomplex formation
Autor: | Tasnim Arroum, Marie-Theres Borowski, Nico Marx, Frank Schmelter, Martin Scholz, Olympia Ekaterini Psathaki, Michael Hippler, José Antonio Enriquez, Karin B. Busch |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Biological Chemistry. 404:399-415 |
ISSN: | 1437-4315 1431-6730 |
DOI: | 10.1515/hsz-2022-0309 |
Popis: | The orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH2) into ATP, the cell’s energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress. Complex I, the NADH-dehydrogenase, is part of the largest supercomplex (CI + CIII2 + CIVn). Here, we demonstrate the role of NDUFB10, a subunit of the membrane arm of complex I, in complex I and supercomplex assembly on the one hand and bioenergetics function on the other. NDUFB10 knockout was correlated with a decrease of SCAF1, a supercomplex assembly factor, and a reduction of respiration and mitochondrial membrane potential. This likely is due to loss of proton pumping since the CI P P -module is downregulated and the P D -module is completely abolished in NDUFB10 knock outs. |
Databáze: | OpenAIRE |
Externí odkaz: |